Selective ion-permeable membranes by insertion of biopores into polymersomes.
نویسندگان
چکیده
In nature there are various specific reactions for which highly selective detection or support is required to preserve their bio-specificity or/and functionality. In this respect, mimics of cell membranes and bio-compartments are essential for developing tailored applications in therapeutic diagnostics. Being inspired by nature, we present here biomimetic nanocompartments with ion-selective membrane permeability engineered by insertion of ionomycin into polymersomes with sizes less than 250 nm. As a marker to assess the proper insertion and functionality of ionomycin inside the synthetic membrane, we used a Ca(2+)-sensitive dye encapsulated inside the polymersome cavity prior to inserting the biopore. The calcium sensitive dye, ionomycin, and Ca(2+) did not influence the architecture and the size of polymersomes. Successful ionomycin functionality inside the synthetic membrane with a thickness of 10.7 nm was established by a combination of fluorescence spectroscopy and stopped-flow spectroscopy. Polymersomes equipped with ion selective membranes are ideal candidates for the development of medical applications, such as cellular ion nanosensors or nanoreactors in which ion exchange is required to support in situ reactions.
منابع مشابه
Modular synthesis of biodegradable diblock copolymers for designing functional polymersomes.
Polymer vesicles, or polymersomes, are promising candidates for applications in drug delivery and tissue imaging. While a vast variety of polymers have been explored for their ability to assemble into polymersomes, relatively little research on the functionalization of these polymers has been reported. We present here a novel route for the synthesis of poly(caprolactone)-b-poly(ethylene glycol)...
متن کاملPolymersomes: tough vesicles made from diblock copolymers.
Vesicles were made from amphiphilic diblock copolymers and characterized by micromanipulation. The average molecular weight of the specific polymer studied, polyethyleneoxide-polyethylethylene (EO40-EE37), is several times greater than that of typical phospholipids in natural membranes. Both the membrane bending and area expansion moduli of electroformed polymersomes (polymer-based liposomes) f...
متن کاملFormation of polymersomes with double bilayers templated by quadruple emulsions.
Polymersomes, vesicles composed of bilayer membranes of amphiphilic block-copolymers, are promising delivery vehicles for long-term storage and controlled release of bioactives; enhanced stability of the membrane makes polymersomes potentially useful in a wide range of biological delivery applications by comparison with liposomes. However, unilamellar structure is intrinsically fragile when sub...
متن کاملKnudsen effusion through polymer-coated three-layer porous graphene membranes.
Graphene membranes have the potential to exceed the permeance and selectivity limits of conventional gas separation membranes. Realizing this potential in practical systems relies on overcoming numerous scalability challenges, such as isolating or sealing permeable defects in macroscopic areas of graphene that can compromise performance and developing methods to create high densities of selecti...
متن کاملSelective ionic transport through tunable subnanometer pores in single-layer graphene membranes.
We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 10(12) cm(-2), while retain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 24 شماره
صفحات -
تاریخ انتشار 2015